Convergence of approximation schemes for nonlocal front propagation equations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of approximation schemes for nonlocal front propagation equations

We provide a convergence result for numerical schemes approximating nonlocal front propagation equations. Our schemes are based on a recently investigated notion of weak solution for these equations. We also give examples of such schemes, for a dislocation dynamics equation, and for a Fitzhugh-Nagumo type system.

متن کامل

Convergence of discontinuous Galerkin schemes for front propagation with obstacles

We study semi-Lagrangian discontinuous Galerkin (SLDG) and RungeKutta discontinuous Galerkin (RKDG) schemes for some front propagation problems in the presence of an obstacle term, modeled by a nonlinear Hamilton-Jacobi equation of the form min(ut+cux, u−g(x)) = 0, in one space dimension. New convergence results and error bounds are obtained for Lipschitz regular data. These “low regularity” as...

متن کامل

Convergence of Nonlocal Threshold Dynamics Approximations to Front Propagation

In this note we prove that appropriately scaled threshold dynamics-type algorithms corresponding to the fractional Laplacian of order α ∈ (0, 2) converge to moving fronts. When α ≧ 1 the resulting interface moves by weighted mean curvature, while for α < 1 the normal velocity is nonlocal of “fractional-type.” The results easily extend to general nonlocal anisotropic threshold dynamics schemes. ...

متن کامل

Regularity results for nonlocal equations by approximation

We obtain C regularity estimates for nonlocal elliptic equations that are not necessarily translation invariant using compactness and perturbative methods and our previous regularity results for the translation invariant case.

متن کامل

On numerical approximation schemes for expectation propagation

Several numerical approximation strategies for the expectation-propagation algorithm are studied in the context of large-scale learning: the Laplace method, a faster variant of it, Gaussian quadrature, and a deterministic version of variational sampling (i.e., combining quadrature with variational approximation). Experiments in training linear binary classifiers show that the expectation-propag...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2010

ISSN: 0025-5718,1088-6842

DOI: 10.1090/s0025-5718-09-02270-4